Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Parasite ; 30: 46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37921620

RESUMO

Toxoplasmosis is caused by Toxoplasma gondii, which infects all warm-blooded animals, including humans. Currently, control measures for T. gondii infection are insufficient due to the lack of effective medications or vaccines. In this paper, recombinant T. gondii uridine phosphorylase (rTgUPase) was expressed in Escherichia coli and purified via Ni2+-NTA agarose. rTgUPase was inoculated intranasally into BALB/c mice, and the induced immune responses were evaluated by mucosal and humoral antibody and cytokine assays and lymphoproliferative measurements. Moreover, the protective effect against the T. gondii RH strain infection was assessed by calculating the burdens of tachyzoites in the liver and brain and by recording the survival rate and time. Our results revealed that mice immunised with 30 µg rTgUPase produced significantly higher levels of secretory IgA (sIgA) in nasal, intestinal, vaginal and vesical washes and synthesised higher levels of total IgG, IgG1 and, in particular, IgG2a in their blood sera. rTgUPase immunisation increased the production of IFN-gamma, interleukin IL-2 and IL-4, but not IL-10 from isolated mouse spleen cells and enhanced splenocyte proliferation in vitro. rTgUPase-inoculated mice were effectively protected against infection with the T. gondii RH strain, showing considerable reduction of tachyzoite burdens in liver and brain tissues after 30 days of infection, and a 44.29% increase in survival rate during an acute challenge. The above findings show that intranasal inoculation with rTgUPase provoked mucosal, humoral and cellular immune responses and indicate that rTgUPase might serve as a promising vaccine candidate for protecting against toxoplasmosis.


Title: L'immunisation intranasale avec l'uridine phosphorylase recombinante de Toxoplasma gondii confère une résistance contre la toxoplasmose aiguë chez la souris. Abstract: La toxoplasmose est causée par Toxoplasma gondii, qui infecte tous les animaux à sang chaud, y compris les humains. Actuellement, les mesures de contrôle de l'infection à T. gondii sont insuffisantes en raison du manque de médicaments ou de vaccins efficaces. Dans cet article, l'uridine phosphorylase recombinante de T. gondii (rTgUPase) a été exprimée dans Escherichia coli et purifiée via de l'agarose Ni2+-NTA. La rTgUPase a été inoculée par voie intranasale à des souris BALB/c et les réponses immunitaires induites ont été évaluées par des dosages d'anticorps et de cytokines muqueuses et humorales et par des mesures de lymphoprolifération. De plus, l'effet protecteur contre l'infection par la souche RH de T. gondii a été évalué en calculant la charge de tachyzoïtes dans le foie et le cerveau et en enregistrant le taux et la durée de survie. Nos résultats ont révélé que les souris immunisées avec 30 µg de rTgUPase produisaient des taux significativement plus élevés d'IgA sécrétoires (sIgA) dans les lavages nasaux, intestinaux, vaginaux et vésicaux et synthétisaient des taux plus élevés d'IgG totales, d'IgG1 et, en particulier, d'IgG2a dans leur sérum sanguin. L'immunisation par la rTgUPase a augmenté la production d'IFN-gamma, d'interleukine IL-2 et IL-4, mais pas d'IL-10 à partir de cellules de rate de souris isolées et a amélioré la prolifération des splénocytes in vitro. Les souris inoculées par la rTgUPase ont été efficacement protégées contre l'infection par la souche RH de T. gondii, montrant une réduction considérable de la charge de tachyzoïtes dans les tissus hépatiques et cérébraux après 30 jours d'infection et une augmentation de 44,29 % du taux de survie lors d'une épreuve aiguë. Les résultats ci-dessus montrent que l'inoculation intranasale de rTgUPase provoque des réponses immunitaires muqueuses, humorales et cellulaires et indiquent que la rTgUPase pourrait servir de candidat vaccin prometteur pour la protection contre la toxoplasmose.


Assuntos
Vacinas Protozoárias , Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Humanos , Feminino , Animais , Camundongos , Toxoplasma/genética , Uridina Fosforilase/genética , Proteínas de Protozoários/genética , Citocinas , Imunização , Imunoglobulina G , Camundongos Endogâmicos BALB C , Anticorpos Antiprotozoários , Toxoplasmose Animal/prevenção & controle
2.
Nature ; 618(7963): 151-158, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198494

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Assuntos
Glucose , Neoplasias Pancreáticas , Ribose , Microambiente Tumoral , Uridina , Animais , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ribose/metabolismo , Uridina/química , Glucose/deficiência , Divisão Celular , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Uridina Fosforilase/deficiência , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo , Humanos
3.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498463

RESUMO

DNA methylation is an epigenetic change to the genome that impacts gene activities without modification to the DNA sequence. Alteration in the methylation pattern is a naturally occurring event throughout the human life cycle which may result in the development of diseases such as cancer. In this study, we analyzed methylation data from The Cancer Genome Atlas, under the Lower-Grade Glioma (LGG) and Glioblastoma Multiforme (GBM) projects, to identify methylation markers that exhibit unique changes in DNA methylation pattern along with tumor grade progression, to predict patient survival. We found ten glioma grade-associated Cytosine-phosphate-Guanine (CpG) sites that targeted four genes (SMOC1, KCNA4, SLC25A21, and UPP1) and the methylation pattern is strongly associated with glioma specific molecular alterations, primarily isocitrate dehydrogenase (IDH) mutation and chromosome 1p/19q codeletion. The ten CpG sites collectively distinguished a cohort of diffuse glioma patients with remarkably poor survival probability. Our study highlights genes (KCNA4 and SLC25A21) that were not previously associated with gliomas to have contributed to the poorer patient outcome. These CpG sites can aid glioma tumor progression monitoring and serve as prognostic markers to identify patients diagnosed with less aggressive and malignant gliomas that exhibit similar survival probability to GBM patients.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Glioma/genética , Neoplasias Encefálicas/patologia , Transportadores de Ácidos Dicarboxílicos/genética , Glioma/patologia , Humanos , Canal de Potássio Kv1.4/genética , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/genética , Osteonectina/genética , Prognóstico , Uridina Fosforilase/genética
4.
Cancer Med ; 9(16): 5940-5947, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32583596

RESUMO

Uridine phosphorylase 1 (UPP1) has been reported as an oncogene in several malignancies. In glioma, the role of UPP1 remains unclear. This study was performed to explore its role in glioma at transcriptional level. Totally, 998 glioma patients with clinical data were enrolled, including 301 mRNA microarray data from Chinese Glioma Genome Atlas (CGGA) dataset and 697 RNAseq data from The Cancer Genome Atlas (TCGA) dataset. Statistical analysis was performed with R language. UPP1 expression level was positively correlated with WHO grade of glioma. UPP1 was significantly upregulated in mesenchymal subtype and could serve as a potential biomarker for this subtype. Based on most correlated genes of UPP1, Gene ontology analysis revealed that UPP1 was profoundly associated with immune and inflammatory response. Gene Sets Variation Analysis was further performed and showed that UPP1 was particularly correlated with MHC-II and LCK, which were mainly associated with activities of antigen-presenting cells and T cells. Moreover, UPP1 was found to be synergistic with various immune checkpoint members, especially with PD1 pathway and B7-H3. Finally, Kaplan-Meier curves revealed that higher UPP1 indicated significantly shorter survival for glioma patients. Taken together, UPP1 played an oncogenic role in glioma via suppressing tumor-related immune response.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/mortalidade , Glioma/enzimologia , Glioma/mortalidade , Uridina Fosforilase/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Isocitrato Desidrogenase/genética , Estimativa de Kaplan-Meier , Prognóstico , Regulação para Cima , Uridina Fosforilase/genética
5.
Life Sci ; 248: 117456, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32097666

RESUMO

AIMS: In this study, we will investigate the therapeutic effects of berberine (BBR) in Helicobacter pylori (H. pylori) induced chronic atrophic gastritis (CAG). Furthermore, potential mechanisms of BBR in regulating IRF8-IFN-γ signaling axis will also be investigated. MATERIALS AND METHODS: H. pylori were utilized to establish CAG model of rats. Therapeutic effects of BBR on serum supernatant indices, and histopathology of stomach were analyzed in vivo. Moreover, GES-1 cells were infected by H. pylori, and intervened with BBR in vitro. Cell viability, morphology, proliferation, and quantitative analysis were detected by high-content screening (HCS) imaging assay. To further investigate the potential mechanisms of BBR, relative mRNA, immunohistochemistry and protein expression in IRF8-IFN-γ signaling axis were measured. KEY FINDINGS: Results showed serum supernatant indices including IL-17, CXCL1, and CXCL9 were downregulated by BBR intervention, while, G-17 increased significantly. Histological injuries of gastric mucosa induced by H. pylori also were alleviated. Moreover, cell viability and morphology changes of GES-1 cells were improved by BBR intervention. In addition, proinflammatory genes and IRF8-IFN-γ signaling axis related genes, including Ifit3, Upp1, USP18, Nlrc5, were suppressed by BBR administration in vitro and in vivo. The proteins expression related to IRF8-IFN-γ signaling axis, including Ifit3, IRF1 and Ifit1 were downregulated by BBR intervention.


Assuntos
Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Gastrite Atrófica/tratamento farmacológico , Infecções por Helicobacter/tratamento farmacológico , Fatores Reguladores de Interferon/genética , Interferon gama/genética , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL9/antagonistas & inibidores , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Doença Crônica , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Gastrite Atrófica/genética , Gastrite Atrófica/imunologia , Gastrite Atrófica/microbiologia , Regulação da Expressão Gênica , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/patogenicidade , Humanos , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/imunologia , Interferon gama/antagonistas & inibidores , Interferon gama/imunologia , Interleucina-17/agonistas , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Proteínas NLR/antagonistas & inibidores , Proteínas NLR/genética , Proteínas NLR/imunologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Uridina Fosforilase/antagonistas & inibidores , Uridina Fosforilase/genética , Uridina Fosforilase/imunologia
6.
J Cell Mol Med ; 23(11): 7438-7448, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31496029

RESUMO

Thyroid cancer incidence has been continuity increasing worldwide. Uridine phosphorylase 1 (UPP1) is a protein-coding gene and has been detected that UPP1 was the higher expression in many solid malignancies, just as head and neck cancers, breast cancer, compared with paired normal tissue. But the act of UPP1 in thyroid cancer is not explicit. In this article, we investigate the function of UPP1 expression in thyroid cancer. The Cancer Genome Atlas (TCGA) unpaired thyroid cancer and normal RNA-seq data were downloaded, and our paired thyroid cancer and normal samples were analysed by a polymerase chain reaction. The expression of UPP1 was regulated by transfected small interfering RNA, and the function of UPP1 was determined via migration, invasion and cell proliferation assays. Western blot assay was achieved to determine the UPP1 expression correlates with the function of 5-FU regulate epithelial-mesenchymal transition. The significant upregulation of UPP1 in thyroid cancer tissues compared with normal thyroid tissues was revealed by our data and TCGA data. UPP1 overexpression was significantly correlated with lymph node metastasis, tumour stage and tumour size. In the cell, experiments showed that UPP1 low expression significantly suppressed the migration, invasion and proliferation. Western blot assay proves the effect of UPP1 expression on 5-FU regulates epithelial-mesenchymal transition pathway. UPP1 plays a crucial oncogene in thyroid cancer. Our findings indicate that UPP1 might be a biomarker of thyroid cancer and may act by regulating epithelial-mesenchymal transition (EMT).


Assuntos
Neoplasias da Glândula Tireoide/genética , Uridina Fosforilase/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , RNA Interferente Pequeno/genética , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima/genética
7.
Microbiol Immunol ; 63(7): 261-268, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209918

RESUMO

Pasteurella multocida is one of the most important bacteria responsible for diseases of animals. Crude extracts from sonicated P. multocida strain Dainai-1, which is serotype A isolated from bovine pneumonia, were found to inhibit proliferation of mouse spleen cells stimulated with Con A. The crude extract was purified by cation and anion exchange chromatography and hydroxyapatite chromatography. Its molecular weight was 27 kDa by SDS-PAGE and it was named PM27. PM27 was found to inhibit proliferation of mouse spleen cells stimulated with Con A as effectively as did the crude extract; however, its activity was lost after heating to 100°C for 20 min. PM27 did not directly inhibit proliferation of HT-2 cells, which are an IL-2-dependent T cell line, nor did it modify IL-2 production by Con A-stimulated mouse spleen cells. The N-terminal amino acid sequence of PM27 was determined and BLAST analysis revealed its identity to uridine phosphorylase (UPase) from P. multocida. UPase gene from P. multocida Dainai-1 was cloned into expression vector pQE-60 in Escherichia coli XL-1 Blue. Recombinant UPase (rUPase) tagged with His at the C-terminal amino acid was purified with Ni affinity chromatography. rUPase was found to inhibit proliferation of mouse spleen cells stimulated with Con A; however, as was true for PM27, its activity was lost after heating to 100°C for 20 min. Thus, PM27/UPase purified from P. multocida has significant antiproliferative activity against Con A-stimulated mouse spleen cells and may be a virulence factor.


Assuntos
Proteínas da Membrana Bacteriana Externa/farmacologia , Proliferação de Células/efeitos dos fármacos , Pasteurella multocida/metabolismo , Uridina Fosforilase/isolamento & purificação , Uridina Fosforilase/farmacologia , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bovinos , Linhagem Celular/efeitos dos fármacos , Escherichia coli/genética , Humanos , Interleucina-2/metabolismo , Camundongos , Peso Molecular , Pasteurella multocida/genética , Fosforilases , Proteínas Recombinantes , Baço , Linfócitos T/efeitos dos fármacos , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
8.
Exp Eye Res ; 185: 107650, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075223

RESUMO

THE AIM OF THE STUDY: was to investigate the molecular genetic mechanisms of the influence of laser radiation with 577 nm wavelength in a microimpulse mode on the retina in the experimental conditions after the intravitreal injection of VEGF. MATERIALS AND METHODS: The study was performed on 4-5 week-old male mice of the line C57BL/6J. The animals were divided into 4 groups of 5 mice in each group, one eye was excremental, the contralateral eye remained intact. In the first group, intravitreal injection of PBS was performed; in the second group, intravitreal injection of 50 ng/ml of recombinant VEGF165 in 2 µL of phosphate-buffered saline (PBS) was performed; in the third and fourth groups, a day after the intravitreal injection of recombinant VEGF165, laser radiation with wavelength 577 nm was applied in the micropulse and continuous modes, respectively. Tissue samples (neuroepithelium, pigment epithelium) for the microarray transcription analysis in the animals from group 1 and 2 were taken 2 days after the injection of PBS and VEGF, in the animals from group 3 and 4 - a day after the retina was exposed to laser radiation. RESULTS AND CONCLUSION: Molecular genetic mechanisms of the influence of laser radiation with wavelength 577 nm in a microimpulse mode on the retina in experimental conditions were studied and the genes that significantly changed the level of expression (the genes that take part in the regulation of neoangiogenesis, structural cell functions, processes of cells proliferation, transcription, differentiation, transmembrane transport, signaling, synaptic transmission, etc.) were identified.


Assuntos
Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Terapia a Laser , Retina/efeitos da radiação , Animais , Proteínas Ligadas por GPI/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Injeções Intravítreas , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Biologia Molecular , Proteínas Recombinantes/administração & dosagem , Retina/metabolismo , Uridina Fosforilase/genética , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
9.
Gastroenterology ; 155(4): 1192-1204.e9, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29964038

RESUMO

BACKGROUND & AIMS: African Americans have the greatest colorectal cancer (CRC) burden in the United States; interethnic differences in protective effects of vitamin D might contribute to disparities. 1α,25(OH)2D3 vitamin D (the active form of vitamin D) induces transcription of the uridine phosphorylase gene (UPP1) in colon tissues of European Americans but to a lesser extent in colon tissues of African Americans. UPP1-knockout mice have increased intestinal concentrations of uridine and Deoxyuridine triphosphate (dUTP), have increased uridine-induced DNA damage, and develop colon tumors. We studied 1α,25(OH)2D3 regulation of UPP1 and uridine-induced DNA damage in the colon and differences in these processes between African and European Americans. METHODS: We quantified expression and activity of UPP1 in response to 1α,25(OH)2D3 in young adult mouse colonic cells, human CRC cells (LS174T), and organoids (derived from rectosigmoid biopsy samples of healthy individuals undergoing colonoscopies) using quantitative polymerase chain reaction, immunoblot, and immunocytochemistry assays. Binding of the vitamin D receptor to UPP1 was tested by chromatin immunoprecipitation. Uridine-induced DNA damage was measured by fragment-length analysis in repair enzyme assays. Allele-specific 1α,25(OH)2D3 responses were tested using luciferase assays. RESULTS: Vitamin D increased levels of UPP1 mRNA, protein, and enzymatic activity and increased vitamin D receptor binding to the UPP1 promoter in young adult mouse colonic cells, LS174T cells, and organoids. 1α,25(OH)2D3 significantly reduced levels of uridine and uridine-induced DNA damage in these cells, which required UPP1 expression. Organoids derived from colon tissues of African Americans expressed lower levels of UPP1 after exposure to 1α,25(OH)2D3 and had increased uridine-induced DNA damage compared with organoids derived from tissues of European Americans. Luciferase assays with the T allele of single nucleotide polymorphism rs28605337 near UPP1, which is found more frequently in African Americans than European Americans, expressed lower levels of UPP1 after exposure to 1α,25(OH)2D3 than assays without this variant. CONCLUSIONS: We found vitamin D to increase expression of UPP1, leading to reduce uridine-induced DNA damage, in colon cells and organoids. A polymorphism in UPP1 found more frequently in African Americans than European Americans reduced UPP1 expression upon cell exposure to 1α,25(OH)2D3. Differences in expression of UPP1 in response to vitamin D could contribute to the increased risk of CRC in African Americans.


Assuntos
Negro ou Afro-Americano/genética , Calcitriol/farmacologia , Colo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Uridina Fosforilase/metabolismo , Uridina/toxicidade , População Branca/genética , Animais , Sítios de Ligação , Linhagem Celular , Colo/enzimologia , Colo/patologia , Citoproteção , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Organoides/efeitos dos fármacos , Organoides/enzimologia , Organoides/patologia , Polimorfismo Genético , Regiões Promotoras Genéticas , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos , Uridina/metabolismo , Uridina Fosforilase/genética
10.
Cancer Lett ; 372(2): 219-25, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26801745

RESUMO

Uridine is a natural nucleoside precursor of uridine monophosphate in organisms and thus is considered to be safe and is used in a wide range of clinical settings. The far-reaching effects of pharmacological uridine have long been neglected. Here, we report that the homeostatic disorder of uridine is carcinogenic. Targeted disruption (-/-) of murine uridine phosphorylase (UPase) disrupted the homeostasis of uridine and increased spontaneous tumorigenesis by more than 3-fold. Multiple tumors (e.g., lymphoma, hepatoma and lung adenoma) occurred simultaneously in some UPase deficient mice, but not in wild-type mice raised under the same conditions. In the tissue from UPase -/- mice, the 2'-deoxyuridine,5'-triphosphate (dUTP) levels and uracil DNA were increased and p53 was activated with an increased phospho-Ser18 p53 level. Exposing cell lines (e.g., MCF-7, RKO, HCT-8 and NCI-H460) to uridine (10 or 30 µM) led to uracil DNA damage and p53 activation, which in turn triggered the DNA damage response. In these cells, phospho-ATM, phospho-CHK2, and phospho-γH2AX were increased by uridine. These data suggest that uridine homeostatic disorder leads to uracil DNA damage and that pharmacological uridine may be carcinogenic.


Assuntos
Transformação Celular Neoplásica/metabolismo , Dano ao DNA , Neoplasias/etiologia , Uridina/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Relação Dose-Resposta a Droga , Genótipo , Homeostase , Humanos , Células MCF-7 , Camundongos Knockout , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Fosforilação , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Uracila/metabolismo , Uridina/toxicidade , Uridina Fosforilase/deficiência , Uridina Fosforilase/genética
11.
BMC Pharmacol Toxicol ; 15: 27, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24887406

RESUMO

BACKGROUND: Tamoxifen, an agonist of estrogen receptor, is widely prescribed for the prevention and long-term treatment of breast cancer. A side effect of tamoxifen is fatty liver, which increases the risk for non-alcoholic fatty liver disease. Prevention of tamoxifen-induced fatty liver has the potential to improve the safety of long-term tamoxifen usage. METHODS: Uridine, a pyrimidine nucleoside with reported protective effects against drug-induced fatty liver, was co-administered with tamoxifen in C57BL/6J mice. Liver lipid levels were evaluated with lipid visualization using coherent anti-Stokes Raman scatting (CARS) microscopy, biochemical assay measurement of triacylglyceride (TAG), and liquid chromatography coupled with mass spectrometry (LC-MS) measurement of membrane phospholipid. Blood TAG and cholesterol levels were measured. Mitochondrial respiration of primary hepatocytes in the presence of tamoxifen and/or uridine was evaluated by measuring oxygen consumption rate with an extracellular flux analyzer. Liver protein lysine acetylation profiles were evaluated with 1D and 2D Western blots. In addition, the relationship between endogenous uridine levels, fatty liver, and tamoxifen administration was evaluated in transgenic mice UPase1-/-and UPase1-TG. RESULTS: Uridine co-administration prevented tamoxifen-induced liver lipid droplet accumulation in mice. The most prominent effect of uridine co-administration with tamoxifen was the stimulation of liver membrane phospholipid biosynthesis. Uridine had no protective effect against tamoxifen-induced impairment to mitochondrial respiration of primary hepatocytes or liver TAG and cholesterol export. Uridine had no effect on tamoxifen-induced changes to liver protein acetylation profile. Transgenic mice UPase1-/-with increased pyrimidine salvage activity were protected against tamoxifen-induced liver lipid droplet accumulation. In contrast, UPase1-TG mice with increased pyrimidine catabolism activity had intrinsic liver lipid droplet accumulation, which was aggravated following tamoxifen administration. CONCLUSION: Uridine co-administration was effective at preventing tamoxifen-induced liver lipid droplet accumulation. The ability of uridine to prevent tamoxifen-induced fatty liver appeared to depend on the pyrimidine salvage pathway, which promotes biosynthesis of membrane phospholipid.


Assuntos
Antineoplásicos Hormonais/efeitos adversos , Fígado Gorduroso/prevenção & controle , Substâncias Protetoras/uso terapêutico , Tamoxifeno/efeitos adversos , Uridina/uso terapêutico , Animais , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Substâncias Protetoras/farmacologia , Uridina/farmacologia , Uridina Fosforilase/deficiência , Uridina Fosforilase/genética
12.
J Biosci Bioeng ; 118(6): 723-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24910260

RESUMO

Genes encoding uridine phosphorylase (UP) and thymidine phosphorylase (TP) from Escherichia coli K12 were cloned and recombined respectively into plasmids pET-21a(+) and pET-28a(+). The recombinant plasmids BL21/pET21a-UP and BL21/pET28a-TP were co-transformed into E. coli BL21(DE3) to construct highly effective BTU strain (BL21/pET28a-TP, pET21a-UP) overexpressing both of UP and TP. BTU was cultivated in ZYM-Fe-5052 medium for 10 h and used as catalyst to synthesize 2'-deoxyuridine (dUR). It was found to increase the productivity of dUR by 8-9 fold when compared to wild E. coli K12 and E. coli BL21(DE3) strains. A series of experiments were carried out to find out the optimal conditions for synthesis of dUR. At 50°C, with 0.25‰ dry wt./v to catalyze the reaction of 2:1 ß-thymidine: uracil (60 mM ß-thymidine, 30 mM uracil), the conversion rate of dUR would reach 61.6% at 1 h, which was much higher than the rates obtained by BTU strain cultured in LB medium and induced by IPTG. This result proved co-expression and auto-induction were efficient methods in enhancing the expression quantity and activity of nucleoside phosphorylases, and they also had significant implications for large-scale industrial production of dUR and synthesis of other nucleoside derivatives.


Assuntos
Biocatálise , Desoxiuridina/metabolismo , Timidina Fosforilase/biossíntese , Timidina Fosforilase/metabolismo , Uridina Fosforilase/biossíntese , Uridina Fosforilase/metabolismo , Indução Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Plasmídeos/genética , Timidina/metabolismo , Timidina Fosforilase/genética , Uridina Fosforilase/genética
13.
PLoS One ; 8(3): e58034, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505454

RESUMO

BACKGROUND: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2'deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5(-/-) trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line. CONCLUSIONS/SIGNIFICANCE: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.


Assuntos
Pirimidinas/biossíntese , Trypanosoma brucei brucei/metabolismo , Doenças dos Animais , Animais , Transporte Biológico , Feminino , Técnicas de Inativação de Genes , Camundongos , Orotato Fosforribosiltransferase/genética , Orotato Fosforribosiltransferase/metabolismo , Inanição , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase Africana/veterinária , Uracila/metabolismo , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
14.
J Lipid Res ; 54(4): 1044-57, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23355744

RESUMO

We report in this study an intrinsic link between pyrimidine metabolism and liver lipid accumulation utilizing a uridine phosphorylase 1 transgenic mouse model UPase1-TG. Hepatic microvesicular steatosis is induced by disruption of uridine homeostasis through transgenic overexpression of UPase1, an enzyme of the pyrimidine catabolism and salvage pathway. Microvesicular steatosis is also induced by the inhibition of dihydroorotate dehydrogenase (DHODH), an enzyme of the de novo pyrimidine biosynthesis pathway. Interestingly, uridine supplementation completely suppresses microvesicular steatosis in both scenarios. The effective concentration (EC(50)) for uridine to suppress microvesicular steatosis is approximately 20 µM in primary hepatocytes of UPase1-TG mice. We find that uridine does not have any effect on in vitro DHODH enzymatic activity. On the other hand, uridine supplementation alters the liver NAD(+)/NADH and NADP(+)/NADPH ratios and the acetylation profile of metabolic, oxidation-reduction, and antioxidation enzymes. Protein acetylation is emerging as a key regulatory mechanism for cellular metabolism. Therefore, we propose that uridine suppresses fatty liver by modulating the liver protein acetylation profile. Our findings reveal a novel link between uridine homeostasis, pyrimidine metabolism, and liver lipid metabolism.


Assuntos
Fígado/metabolismo , Pirimidinas/metabolismo , Uridina/metabolismo , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Triglicerídeos/metabolismo , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
15.
Appl Microbiol Biotechnol ; 97(2): 837-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23250226

RESUMO

The formation of inclusion bodies (IBs) in recombinant protein biotechnology has become one of the most frequent undesirable occurrences in both research and industrial applications. So far, the pET System is the most powerful system developed for the production of recombinant proteins when Escherichia coli is used as the microbial cell factory. Also, using fusion tags to facilitate detection and purification of the target protein is a commonly used tactic. However, there is still a large fraction of proteins that cannot be produced in E. coli in a soluble (and hence functional) form. Intensive research efforts have tried to address this issue, and numerous parameters have been modulated to avoid the formation of inclusion bodies. However, hardly anyone has noticed that adding fusion tags to the recombinant protein to facilitate purification is a key factor that affects the formation of inclusion bodies. To test this idea, the industrial biocatalysts uridine phosphorylase from Aeropyrum pernix K1 and (+)-γ-lactamase and (-)-γ-lactamase from Bradyrhizobium japonicum USDA 6 were expressed in E. coli by using the pET System and then examined. We found that using a histidine tag as a fusion partner for protein expression did affect the formation of inclusion bodies in these examples, suggesting that removing the fusion tag can promote the solubility of heterologous proteins. The production of soluble and highly active uridine phosphorylase, (+)-γ-lactamase, and (-)-γ-lactamase in our results shows that the traditional process needs to be reconsidered. Accordingly, a simple and efficient structure-based strategy for the production of valuable soluble recombinant proteins in E. coli is proposed.


Assuntos
Histidina/genética , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Biotecnologia/métodos , Vetores Genéticos/genética , Plasmídeos/genética , Proteínas Recombinantes/genética , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
16.
Gene ; 510(2): 154-61, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22967797

RESUMO

Nucleoside phosphorylases are essential for the salvage and catabolism of nucleotides in bacteria and other organisms, and members of this enzyme superfamily have been of interest for the development of antimicrobial and cancer therapies. The nucleotide phosphorylase superfamily 1 encompasses a number of different enzymes which share a general superfold and catalytic mechanism, while they differ in the nature of the nucleophiles used and in the nature of characteristic active site residues. Recently, one subfamily, the uridine phosphorylases, has been subdivided into two types which differ with respect to the mechanism of transition state stabilization, as dictated by differences in critical amino acid residues. Little is known about the phylogenetic distribution and relationship of the two different types, as well as the relationship to other NP-1 superfamily members. Here comparative genomic analysis illustrates that UP-1s and UP-2s fall into monophyletic groups and are biased with respect to species representation. UP-1 evolved in Gram negative bacteria, while Gram positive species tend to predominantly contain UP-2. PNP (a sister clade to all UPs) contains both Gram positive and Gram negative species. The findings imply that the nucleoside phosphorylase superfamily 1 evolved through a series of three important duplications, leading to the separate, monophyletic enzyme families, coupled to individual lateral transfer events. Extensive horizontal transfer explains the occurrence of unexpected uridine phosphorylases in some genomes. This study provides a basis for understanding the evolution of uridine and purine nucleoside phosphorylases with respect to DNA/RNA metabolism and with potential utility in the design of antimicrobial and anti-tumor drugs.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Evolução Molecular , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Domínio Catalítico , Escherichia coli/enzimologia , Escherichia coli/genética , Pentosiltransferases/química , Pentosiltransferases/classificação , Filogenia , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Uridina Fosforilase/química , Uridina Fosforilase/classificação , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
17.
World J Microbiol Biotechnol ; 28(2): 721-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22806868

RESUMO

Nucleoside analogues are used widely for the treatment of viral diseases and cancer, however the preparation of some important intermediates of these nucleoside analogues, including 2'-deoxyadenosine (dAR) and 5-methyluridine (5-MU), remains inconvenient. To optimize the synthesis of dAR and 5-MU, recombinant strains and auto-induction medium were employed in this study. E. coli BL21(DE3) strains overexpressing purine nucleoside phosphorylase (PNP), uridine phosphorylase (UP) and thymidine phosphorylase (TP) were constructed and cultured in auto-induction ZYM-Fe-5052 medium for 8 h. The cultures of these strains were then used directly to synthesize dAR and 5-MU. Under optimized conditions, 30 mM adenine was converted to 29 mM dAR in 1 h, and 32 mM 5-MU was obtained from 60 mM thymine, using 6% (v/v) cell solutions as biocatalysts. These results indicate that our convenient and efficient method is ideal for the preparation of dAR and 5-MU, and has potential for the preparation of other nucleoside analogue intermediates.


Assuntos
Desoxiadenosinas/biossíntese , Escherichia coli/metabolismo , Uridina/análogos & derivados , Escherichia coli/genética , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Timidina Fosforilase/genética , Timidina Fosforilase/metabolismo , Uridina/biossíntese , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
18.
Mol Psychiatry ; 17(2): 215-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21151189

RESUMO

Current genomewide association studies account for only a small fraction of the estimated heritabilities of genetically complex neuropsychiatric disorders, indicating they are likely to result from the small effects of numerous predisposing variants, many of which have gone undetected. The statistical power to detect associations of common variants with small effects is increased by conducting joint association tests of a single nucleotide polymorphism (SNP), an additional risk factor (F), and their interaction. F can represent an environmental exposure, another genotype or any source of genetic heterogeneity. In case and control studies, logistic regression makes joint tests straightforward. This analytic method cannot be employed directly when SNP transmission tests are used to detect associations in parent/affected child trios and multiplex families. However, the method can be implemented using the case/pseudocontrol approach. We applied this approach to analyze data from a genomewide association study of multiplex families ascertained for Autism Spectrum Disorder, where sex was used to define the F. Joint analyses revealed two associations exceeding genomewide significance. One novel gene, Ryandine Receptor 2, implicated in calcium channel defects, was identified with a joint P-value of 3.9E-11. Calcium channel defects have been connected to Autism spectrum disorder (ASD) by Timothy Syndrome, which is Mendelian, and a previous targeted sex-specific association analysis of idiopathic Autism. A second gene, uridine phosphorylase 2, with a joint P-value of 2.3E-9, has been previously linked and associated with Autism in independent samples. These findings highlight two Autism candidate genes for follow-up studies.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Caracteres Sexuais , Uridina Fosforilase/genética , Criança , Saúde da Família , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Probabilidade , Fatores de Risco
19.
Mol Cancer Ther ; 10(12): 2330-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21954436

RESUMO

Abrogation of uridine phosphorylase (UPase) leads to abnormalities in pyrimidine metabolism and host protection against 5-fluorouracil (5-FU) toxicity. We elucidated the effects on the metabolism and antitumor efficacy of 5-FU and capecitabine (N(4)-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine) in our UPase knockout (UPase(-/-)) model. Treatment with 5-FU (85 mg/kg) or capecitabine (1,000 mg/kg) five days a week for four weeks caused severe toxicity and structural damage to the intestines of wild-type (WT) mice, but not in UPase(-/-) animals. Capecitabine treatment resulted in a 70% decrease in blood cell counts of WT animals, with only a marginal effect in UPase(-/-) mice. UPase expressing colon 38 tumors implanted in UPase(-/-) mice revealed an improved therapeutic efficacy when treated with 5-FU and capecitabine because of the higher maximum tolerated dose for fluoropyrimidines achievable in UPase(-/-) mice. (19)F-MRS evaluation of capecitabine metabolism in tumors revealed similar activation of the prodrug in UPase(-/-) mice compared with WT. In WT mice, approximately 60% of capecitabine was transformed over three hours into its active metabolites, whereas 80% was transformed in tumors implanted in UPase(-/-) mice. In UPase(-/-) mice, prolonged retention of 5'dFUR allowed a proportional increase in tumor tissue. The similar presence of fluorinated catabolic species confirms that dihydropyrimidine dehydrogenase activity was not altered in UPase(-/-) mice. Overall, these results indicate the importance of UPase in the activation of fluoropyrimidines, the effect of uridine in protecting normal tissues, and the role for tumor-specific modulation of the phosphorolytic activity in 5-FU or capecitabine-based chemotherapy.


Assuntos
Fluoruracila/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Uridina Fosforilase/genética , Animais , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/uso terapêutico , Capecitabina , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/análogos & derivados , Fluoruracila/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/enzimologia , Neoplasias/metabolismo , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Resultado do Tratamento , Uridina Fosforilase/metabolismo , Uridina Fosforilase/fisiologia
20.
Biochemistry ; 50(30): 6549-58, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21707079

RESUMO

Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 Å resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an α/ß monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is ∼7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.


Assuntos
Proteínas de Bactérias/química , Família Multigênica , Streptococcus pyogenes/enzimologia , Uridina Fosforilase/química , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Ribosemonofosfatos/química , Eletricidade Estática , Especificidade por Substrato/genética , Uracila/química , Uridina Fosforilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA